### SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR Siddarth Nagar, Narayanavanam Road -517583

#### **QUESTION BANK(OBJECTIVE)**

Course & Branch: B.Tech - Common to CSE, CSM, CIC, CSIT Year & Sem: III-B. Tech & II-Sem Subject with Code: 20CS0523 & Design And Analysis of Algorithm Regulation: R20

#### 1. There are \_\_\_\_\_steps to solve the problem [ ] B. Four C. Six A. Seven D.Two 2. \_\_\_\_\_is the first step in solving the problem 1 ſ A. Understanding the Problem B. Identify the Problem D. None of these C. Evaluate the Solution 3. \_is the last step in solving the problem [ ] A. Understanding the Problem B. Identify the Problem C. Evaluate the Solution D. None of these 4. Following is true for understanding of a problem 1 ſ B. Understanding the subject on A. Knowing the knowledgebase which the problem is based C. Communication with the client D. All of the above 5. The six-step solution for the problem can be applied to 1 ſ I. Problems with Algorithmic Solution II. Problem with Heuristic Solution A. Only I B. Only II C.Both I and II D. Neither I nor II 6. \_\_\_\_\_ solution requires reasoning built on knowledge and experience ſ ] A. Algorithmic Solution **B.** Heuristic Solution C. Random D. None of Solution these 7. While solving the problem with computer the most difficult step is \_\_\_\_\_ ] ſ A. describing the problem B. finding out the cost of the software C. writing the computer instructions D. testing the solution 8. The correctness and appropriateness of \_\_\_\_\_\_\_solution can be checked very easily. 1 ſ A. algorithmic solution B. heuristic solution C. random solution D. none of these 9. The branch of computer that deals with heuristic types of problem is called \_\_\_\_ ] ſ B. real time software A. system software C. artificial intelligence D. none of these 10. In analysis of algorithm, approximate relationship between the size of the job and the amount ſ ] of work required to do is expressed by using \_ A.Central tendency B. Differential equation C. Order of execution D. Order of magnitude 11. The function f(n)=O(g(n)) if there exists positive constant C and $n_0$ such that ſ ] A. $f(n) \neq c * g(n)$ for all $n, n \ge no$ B. f(n) > c \* g(n) for all $n, n \ge no$ C. f(n) = c \* g(n) for all $n, n \ge no$ D. $f(n) \le c * g(n)$ for all $n, n \ge no$ 12. In function $f(n) = \Omega(g(n))$ , the function g is ſ 1

UNIT-1

| Co  | ourse Code: 20CS0523                                                                                                  |                                                                                                        |                        | <b>R20</b>          |
|-----|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------|---------------------|
|     | A. Upper bound                                                                                                        | B. Lower bound                                                                                         |                        |                     |
|     | C. Unbounded function                                                                                                 | D. Cannot be determ                                                                                    | ine                    |                     |
| 13. | The Process of exectig a correct program a corr<br>and space is called                                                | rect program on data sets a                                                                            | and measuring the time | [                   |
|     | A. Profiling                                                                                                          | B. Debugging                                                                                           | C. Designing           | D. Identifying      |
| 4.  | In which of the following testing method we co<br>consumption of time and space                                       | ollect actual statistics abou                                                                          | t the algorithm        | [                   |
|     | A. Priori testing                                                                                                     | B. Normal testing                                                                                      | C. Posteriori testing  | D. Debugging        |
| 5.  | Following is the relationship between the comp<br>A. $O(\log n) < O(n2) < O(n \log n) < O(2n)$                        | outing times O(log n), O(n<br>B. O(2n ) <o(log n)<<="" td=""><td></td><td><sup>2</sup>) [</td></o(log> |                        | <sup>2</sup> ) [    |
|     | $B.O(\log n) < O(n \log n) < O(n2) < O(2n)$                                                                           | D. O(n2) <o(n log="" n<="" td=""><td></td><td></td></o(n>                                              |                        |                     |
| 6.  | Binary search In successful searches Best case                                                                        | e is                                                                                                   | -                      | [                   |
|     | A.O (1)                                                                                                               | B. Θ (n)                                                                                               | C. $\Theta$ (n logn)   | D. $\Theta(\log n)$ |
| 7.  | In unsuccessful searches binary search worst is                                                                       |                                                                                                        |                        | [                   |
|     | A. $\Theta(\log n)$                                                                                                   | B. Θ(n)                                                                                                | C. $\Theta(\log n)$    | D. o(n/2)           |
| 8.  | Binary search In successful searches average of                                                                       | case is                                                                                                |                        | [                   |
|     | A. $\Theta(\log n)$                                                                                                   | B. Θ(n)                                                                                                | C. $\Theta(nlogn)$     | D. $\Theta(\log n)$ |
| 9.  | In Strassen's matrix multiplication c11 is                                                                            |                                                                                                        |                        | [                   |
|     | A. P+S-T+V                                                                                                            | B. P+S                                                                                                 | C. T+V                 | D. P+S-T            |
| 0.  | A Recursive algorithm is a function that is def                                                                       | ined in terms of                                                                                       |                        | [                   |
|     | A. Itself                                                                                                             | B. indirect                                                                                            | C. direct              | D. sort             |
| 1.  | The function $f(n) = \Omega(g(n))$ if there exist positive                                                            | ve constants c and n0 such                                                                             | that                   | [                   |
|     | A. $f(n) \ge c^*g(n)$                                                                                                 | B. $f(n) \leq c^*g(n)$                                                                                 | C. $f(n)=c*g(n)$       | D. $f(n)/c^*g(n)$   |
| 2.  | is the expression of an algorithm in a prog                                                                           | gramming language                                                                                      |                        | [                   |
|     | A. Performance                                                                                                        | B. effectiveness                                                                                       | C. program             | D. validation       |
| 3.  | is a finite set of instructions that acc                                                                              | omplishes a particular task                                                                            | κ.                     | [                   |
|     | A.Input                                                                                                               | B. Output                                                                                              | C. Algorithm           | D. Fineness         |
| 4.  | The word algorithm comes from the name of the                                                                         | ne author                                                                                              |                        | [                   |
|     | A. Bilgates                                                                                                           | B. Abu jafar Moham                                                                                     | med ibn musa al khowa  | arizmi              |
|     | C. Darwin                                                                                                             | D. Bubbage                                                                                             |                        |                     |
| 5.  | The best case complexity of binary search in un                                                                       | nsuccessful search                                                                                     |                        | [                   |
|     | A. O (N)                                                                                                              | B. $\theta(N)$                                                                                         | C. θ(N+1)              | D. O(N+1)           |
| 6   | In method the worst, aver                                                                                             | age, best cases are same.                                                                              |                        | [                   |
|     | A. heap sort                                                                                                          | B. merge sort                                                                                          | C. quick sort          | D. insertion        |
| 7.  | The recurrence relation of maxmin iswhe                                                                               | n n=                                                                                                   |                        | [                   |
|     | A. C (n)=1                                                                                                            | B. C(n)=3                                                                                              | C. C(n)=2              | D. NONE             |
| 8.  | For analyzing an algorithm, which is better cor                                                                       | nputing time?                                                                                          |                        | [                   |
|     | A. O (100 Log N)                                                                                                      | B. O (N) (c) O (2N)                                                                                    | C. O (N logN)          | D. O (N2).          |
| 9.  | Consider the usual algorithm for determining we the maximum number of parentheses that will a analyzes: $(()(())(())$ |                                                                                                        |                        | _                   |
|     | A. 1                                                                                                                  | B. 2                                                                                                   | C.3                    | D.4                 |
| 0.  | Recursive algorithms are based on                                                                                     |                                                                                                        |                        | [                   |
|     | A. Divide and conquer approach                                                                                        | B. Top-down approa                                                                                     | ch                     |                     |
|     | C. Bottom-up approach                                                                                                 | D. Hierarchical appro                                                                                  |                        |                     |

| 31.        | There are four algorithms A1, A2, A3, A $log(n)$ , $nlog(n)$ , $log(log(n))n/log(n)$ , Wh                       | <b>e</b> 1                            |                               | Ľ                     | J |
|------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------|-----------------------|---|
|            | A. A1                                                                                                           | B. A2                                 | C. A3                         | D. A4                 |   |
| 52.        | Express the formula $(n-1)^*(n-5)$ in term                                                                      | s of big Oh notation                  |                               | ]                     | ] |
|            | A. O(1)                                                                                                         | B. O(log n                            | C. O(n)                       | D. O(n2)              | _ |
| 3.         | What is the objective of tower of hanoi                                                                         | puzzle?                               |                               | [                     | ] |
|            | A.To move all disks to some other rod b                                                                         | by following rules                    |                               |                       |   |
|            | B. To divide the disks equally among the                                                                        | e three rods by following rules       |                               |                       |   |
|            | C. To move all disks to some other rod                                                                          | in random order                       |                               |                       |   |
|            | D. To divide the disks equally among the                                                                        | ree rods in random order              |                               |                       |   |
| 84.        | Which of the following is NOT a rule o                                                                          | f tower of hanoi puzzle?              |                               | [                     | ] |
|            | A. No diskshould be placed over a smal                                                                          | ller disk                             |                               |                       |   |
|            | B. Disk can only be moved if it is the up                                                                       | ppermost disk of the stack            |                               |                       |   |
|            | C. No disk should be placed over a larg                                                                         | er disk                               |                               |                       |   |
|            | D. Only one disk can be moved at a tim                                                                          | e                                     |                               |                       |   |
| 85.        | The time complexity of the solution tow                                                                         | ver of hanoi problem using recursio   | n is                          | [                     | ] |
|            | A. O(n2)                                                                                                        | B. O(2n)                              | C.O(n log n)                  | D. O(n)               |   |
| 86.        | Recurrence equation formed for the tow                                                                          | ver of hanoi problem is given by      |                               | [                     | ] |
|            | A. $T(n) = 2T(n-1)+n$                                                                                           | B. $T(n) = 2T(n/2) + c$               | C. $T(n) = 2T(n-1)+c$         | D. $T(n) = 2T(n/2)+n$ |   |
| 37.        | Minimum number of moves required to                                                                             | solve a tower of hanoiproblem with    | h n disks is                  | [                     | ] |
|            | A. 2n                                                                                                           | B. 2n-1                               | C.n2                          | D. n2-1               |   |
| 38.        | Recursve soluton of tower of hanoi prol algorithm?                                                              | blem is an example of which f the fo  | ollowing the followir         | ng [                  | ] |
|            | A. Dynamic programming                                                                                          | B. Backtracking                       |                               |                       |   |
|            | C. Greedy algorithm                                                                                             | D. Divide and conquer                 |                               |                       |   |
|            |                                                                                                                 | · · · · · · · · · · · · · · · · · · · |                               | Г                     | 1 |
| <b>39.</b> | Tower of hanoi problem can be solved i                                                                          | iteratively.                          |                               | L                     | 1 |
| 39.<br>40. | Tower of hanoi problem can be solved in<br>A. True<br>Minimum time required to solve tower a<br>seconds, wii be | B.False                               | C. A&B<br>ing one move take 2 | D.None                | ] |

# **R20**

#### UNIT-2

|   |     |                                                   | UN                                 | IT-2                                 |                                |      |
|---|-----|---------------------------------------------------|------------------------------------|--------------------------------------|--------------------------------|------|
|   | 1.  | Breadth First Search is eq                        | uivalent to which of the trave     | ersal in the Binary Trees?           | [                              | ]    |
|   |     | A. Pre-order Traversal                            | B. Post-order Traversal            | C. Level-order Traversal             | D. In-order Traversa           | al   |
|   | 2.  | Time Complexity of Brea                           | ndth First Search is? (V – nun     | nber of vertices, E – number of      | f edges) [                     | ]    |
|   |     | A. $O(V + E)$                                     | B. O(V)                            | C. O(E)                              | D. O(V*E)                      |      |
|   | 3.  | The Data structure used in                        | n standard implementation of       | Breadth First Search is?             | [                              | ]    |
|   |     | A. Stack                                          | B.Queue                            | C. Linked List                       | D. Tree                        |      |
|   | 4.  | The Breadth First Search                          | traversal of a graph will resu     | lt into?                             | [                              | ]    |
|   |     | A. Linked List                                    | B. Tree                            | C. Graph with back edges             | D. Arrays                      |      |
| 5 | 5.  |                                                   |                                    | vertex and then wants to visit e     | every place [                  | ]    |
|   |     | connected to this vertex a A.DFS                  | nd so on. What algorithm he B. BFS |                                      | D. Kruskal's                   |      |
|   |     | A.Dr5                                             | D. DF3                             | C.Prim'S Algorthm                    | Algorithm                      |      |
|   | 6.  | Which of the following is                         | not an application of Breadt       | h First Search?                      | [                              | 1    |
|   |     | A. Finding shortest path b                        |                                    | B. Finding bipartitions of a         | graph                          | 1    |
|   |     | C. GPS navigation system                          |                                    | D. Path Finding                      | 5F                             |      |
|   | 7.  | e :                                               | earch of a graph is unique?        |                                      | [                              | 1    |
|   |     | A. When the graph is a B                          |                                    | B. When the graph is a Link          |                                | 1    |
|   |     | C. When the graph is a n-                         | •                                  | D. When the graph is a Tern          |                                |      |
| 8 | 3.  | <b>U</b>                                          | •                                  | ng queues, what is the maximu        | •                              | ]    |
|   |     | -                                                 | nt in the queue? (considering      |                                      |                                |      |
|   |     | A. Can be anything                                | B.0                                | C. At most 1                         | D. Insufficient<br>Information |      |
|   | 9.  | In BFS, how many times                            | a node is visited?                 |                                      | Information<br>[               | 1    |
|   |     | A. Once                                           | B. Twice                           | C. Equivalent to number of           | D. Thrice                      | 1    |
|   |     |                                                   |                                    | in degree of the node                |                                |      |
| - | 10. | Which of the following is                         | not an application of Depth        |                                      | [                              | ]    |
|   |     | A.For generating topolog                          | <b>e</b> 1                         | B. Peer to Peer Networks             |                                |      |
|   |     | C. Detecting cycles in the                        | e graph                            | D. For generating Strongly (         | Connected Components           | s of |
|   | 11. | Estate d'actual annul (                           | 7 'dh                              | a directed graph                     | h f                            | 1    |
| - | 11. | • •                                               |                                    | , the sum of the degrees of each $C$ |                                | 1    |
|   | 12. | A. ne                                             | B. 2n                              | C. 2e                                | D. e^n                         | 1    |
| - | 14, | A complete graph can hav<br>A. n^2 spanning trees |                                    | C. n^(n+1) spanning trees            |                                | 1    |
|   | 13. | 1 0                                               | B.n^(n-2) spanning trees           |                                      | D.n^n spanning tre             | 205  |
| - | 13. | A. trees are not                                  | nt from a tree traversal, becau    | C. trees have root                   | L<br>D. None of these          | ]    |
|   |     | connected                                         | B. graphs may have loops           |                                      |                                |      |
| - | 14. | The number of edges in a                          | simple, n-vertex, complete g       | graph is                             | [                              | ]    |
|   |     | A.n*(n-2)                                         | B.n*(n-1)                          | C.n*(n-1)/2                          | D.n*(n-1)*(n-2)                |      |
| - | 15. | Graphs are represented us                         | sing                               |                                      | [                              | ]    |
|   |     | A.Adjacency tree                                  | B.Adjacency linked list            | C.Adjacency graph                    | D.Adjacency queu               | e    |
| - | 16. | The spanning tree of com                          | nected graph with 10 vertices      | contains                             | [                              | ]    |
|   |     | A. 9 edges                                        | B. 11 edges                        | C. 10 edges                          | D. 9 vertices                  |      |
|   | 17. | If locality is a concern, yo                      | ou can use to trave                | rse the graph.                       | [                              | ]    |
|   |     | A. Breadth First Search                           | B. Depth First Search              | C. Either BFS or DFS                 | D. None of these               |      |
| - | 18. | Which of the following all                        | lgorithms solves the all-pair s    | shortest path problem?               | [                              | ]    |
|   |     | A. Floyd's algorithm                              | B. Prim's algorithm                | C. Dijkstra's algorithm              | D. Warshall's algorith         | ım   |
|   | 19. | The minimum number of                             | colors needed to color a grap      | oh having n (>3) vertices and 2      | edges is                       | ]    |
|   |     | A.1                                               | B.2                                | C.3                                  | D.4                            |      |
|   |     |                                                   |                                    |                                      |                                |      |

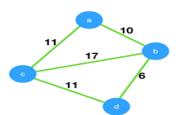
| 20.                        |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                    |                                                                                                                |             |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------|
|                            | Which of the following                                                                                                                                                                                                                                                                                                                                | is useful in traversing a given g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | graph by breadth first search                                                                                                                                                                                                                                                                                      | 1?                                                                                                             | [           |
|                            | A. set                                                                                                                                                                                                                                                                                                                                                | B. List                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C. stacks                                                                                                                                                                                                                                                                                                          | D. Queue                                                                                                       |             |
| ι.                         | From a complete graph, spanning tree.                                                                                                                                                                                                                                                                                                                 | by removing maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                  | construct a                                                                                                    | [           |
|                            | A. e-n+1                                                                                                                                                                                                                                                                                                                                              | B. n-e+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C. n+e-1                                                                                                                                                                                                                                                                                                           | D. e-n-1                                                                                                       | _           |
| •                          | Minimum number of spa                                                                                                                                                                                                                                                                                                                                 | anning tree in a connected grap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | bh is                                                                                                                                                                                                                                                                                                              |                                                                                                                | [           |
|                            | A.n                                                                                                                                                                                                                                                                                                                                                   | B.(n-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C.1                                                                                                                                                                                                                                                                                                                | D.0                                                                                                            |             |
| 3.                         | Find the odd out                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                    |                                                                                                                | [           |
|                            | A. Prim's Minimal Span<br>C. Floyd-Warshall'sAll                                                                                                                                                                                                                                                                                                      | ning Tree Algorithm<br>pair shortest path Algorithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B. Kruskal's Minimal Spa<br>D. Dijkstra's Minimal Spa                                                                                                                                                                                                                                                              |                                                                                                                |             |
| •                          | G(V,E) is stored in form                                                                                                                                                                                                                                                                                                                              | g-time of Dijkstra's single sour<br>of adjacency list and binary h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                    | 0                                                                                                              | [           |
|                            | A. O( V 2)                                                                                                                                                                                                                                                                                                                                            | B. $O( V  \log  V )$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C. O( $ E + V  \log  V $ )                                                                                                                                                                                                                                                                                         | D. None of the                                                                                                 | se          |
| 5.                         | Maximum degree of any                                                                                                                                                                                                                                                                                                                                 | vertex in a simple graph of ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ertices n is                                                                                                                                                                                                                                                                                                       |                                                                                                                | L           |
|                            | A. 2n − 1                                                                                                                                                                                                                                                                                                                                             | B.n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C.O(log n)                                                                                                                                                                                                                                                                                                         | D.O(log (log n                                                                                                 | ))          |
| ).                         | A directed graph isi                                                                                                                                                                                                                                                                                                                                  | f there is a path from each vert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ex to every other vertex in t                                                                                                                                                                                                                                                                                      | he digraph.                                                                                                    | [           |
|                            | A. Weakly connected                                                                                                                                                                                                                                                                                                                                   | B. Strongly Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C. Tightly Connected                                                                                                                                                                                                                                                                                               | D. Linearly Co                                                                                                 | nnecte      |
| 7.                         | Consider a complete gra                                                                                                                                                                                                                                                                                                                               | ph G with 4 vertices. The grap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | h G has spanning trees                                                                                                                                                                                                                                                                                             | S.                                                                                                             | [           |
|                            | A.15                                                                                                                                                                                                                                                                                                                                                  | B.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C.16                                                                                                                                                                                                                                                                                                               | D.13                                                                                                           |             |
| 8.                         | The travelling salesman                                                                                                                                                                                                                                                                                                                               | problem can be solved using _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                    |                                                                                                                | [           |
|                            | A.A spanning tree.                                                                                                                                                                                                                                                                                                                                    | B. minimum spanning tree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C. Bellman – Ford<br>algorithm                                                                                                                                                                                                                                                                                     | D. DFS travers                                                                                                 | al          |
|                            | Then, which of the follo                                                                                                                                                                                                                                                                                                                              | ũ là chí                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ige AB is edge with maxim                                                                                                                                                                                                                                                                                          | iiii weigiit.                                                                                                  |             |
|                            | <b>B</b> . If AB is in a minimum                                                                                                                                                                                                                                                                                                                      | ning tree of G must contain Cl<br>n spanning tree, then its remov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                    |                                                                                                                |             |
|                            | B. If AB is in a minimum C. No minimum spannin                                                                                                                                                                                                                                                                                                        | n spanning tree, then its removing tree contains AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                    |                                                                                                                |             |
| ).                         | <ul><li>B. If AB is in a minimum</li><li>C. No minimum spanning</li><li>G has a unique minimum</li></ul>                                                                                                                                                                                                                                              | n spanning tree, then its removing tree contains AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | val must disconnect G                                                                                                                                                                                                                                                                                              | Γ of the given                                                                                                 | [           |
|                            | <ul><li>B. If AB is in a minimum</li><li>C. No minimum spanning</li><li>G has a unique minimum</li><li>Consider the graph show</li></ul>                                                                                                                                                                                                              | n spanning tree, then its removing tree contains AB<br>n spanning tree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | val must disconnect G                                                                                                                                                                                                                                                                                              | Γ of the given                                                                                                 | [           |
| •                          | B. If AB is in a minimum<br>C. No minimum spannin<br>G has a unique minimum<br>Consider the graph show<br>graph?                                                                                                                                                                                                                                      | n spanning tree, then its removing tree contains AB<br>n spanning tree<br>on below. Which of the follows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | val must disconnect G                                                                                                                                                                                                                                                                                              | Γ of the given                                                                                                 | [           |
| •                          | B. If AB is in a minimum<br>C. No minimum spannin<br>G has a unique minimum<br>Consider the graph show<br>graph?                                                                                                                                                                                                                                      | n spanning tree, then its removing tree contains AB<br>n spanning tree<br>on below. Which of the follows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | al must disconnect G<br>ing are the edges in the MST<br><b>B</b> . (c-a)(a-d)(d-b)(d-e)                                                                                                                                                                                                                            | -                                                                                                              | [           |
|                            | B. If AB is in a minimum<br>C. No minimum spannin<br>G has a unique minimum<br>Consider the graph show<br>graph?<br>A. (a-c)(c-d)(d-b)(d-b)<br>C. (a-d)(d-c)(d-b)(d-e)                                                                                                                                                                                | n spanning tree, then its removing tree contains AB a spanning tree with below. Which of the following $26$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | val must disconnect G                                                                                                                                                                                                                                                                                              | -                                                                                                              | ſ           |
|                            | B. If AB is in a minimum<br>C. No minimum spannin<br>G has a unique minimum<br>Consider the graph show<br>graph?<br>A. (a-c)(c-d)(d-b)(d-b)<br>C. (a-d)(d-c)(d-b)(d-e)<br>The time complexity of                                                                                                                                                      | n spanning tree, then its removing tree contains AB<br>n spanning tree<br>on below. Which of the following<br>the following tree<br>of the follo                                      | al must disconnect G<br>ing are the edges in the MST<br>B. (c-a)(a-d)(d-b)(d-e)<br>D. (c-a)(a-d)(d-c)(d-b)(d-e)                                                                                                                                                                                                    | 2)                                                                                                             | [           |
| •                          | B. If AB is in a minimum<br>C. No minimum spannin<br>G has a unique minimum<br>Consider the graph show<br>graph?<br>A. (a-c)(c-d)(d-b)(d-b)<br>C. (a-d)(d-c)(d-b)(d-e)<br>The time complexity of<br>A.O(n <sup>2</sup> )                                                                                                                              | n spanning tree, then its removing tree contains AB<br>n spanning tree<br>on below. Which of the following<br>present the following tree<br>of t                                      | <ul> <li>al must disconnect G</li> <li>ing are the edges in the MST</li> <li>B. (c-a)(a-d)(d-b)(d-e)</li> <li>D. (c-a)(a-d)(d-c)(d-b)(d-e)</li> <li>C.O (log n)</li> </ul>                                                                                                                                         | e)<br>D.O (n log n <sup>2</sup> )                                                                              | [           |
| •                          | B. If AB is in a minimum<br>C. No minimum spannin<br>G has a unique minimum<br>Consider the graph show<br>graph?<br>A. (a-c)(c-d)(d-b)(d-b)<br>C. (a-d)(d-c)(d-b)(d-e)<br>The time complexity of<br>A.O(n <sup>2</sup> )<br>The upper bound on the                                                                                                    | n spanning tree, then its removing tree contains AB<br>n spanning tree<br>on below. Which of the following $26$<br>20<br>20<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A must disconnect G<br>ing are the edges in the MST<br>B. (c-a)(a-d)(d-b)(d-e)<br>D. (c-a)(a-d)(d-c)(d-b)(d-e)<br>C.O (log n)<br>erministic sorting algorithm                                                                                                                                                      | e)<br>D.O (n log n <sup>2</sup> )<br>is                                                                        | [           |
| •                          | B. If AB is in a minimum<br>C. No minimum spannin<br>G has a unique minimum<br>Consider the graph show<br>graph?<br>A. $(a-c)(c-d)(d-b)(d-b)$<br>C. $(a-d)(d-c)(d-b)(d-e)$<br>The time complexity of<br>A.O(n <sup>2</sup> )<br>The upper bound on the<br>A. O (n)                                                                                    | n spanning tree, then its removing tree contains AB<br>n spanning tree<br>on below. Which of the following tree<br>26 (n)<br>20 (n)<br>PRIMs algorithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>al must disconnect G</li> <li>ing are the edges in the MST</li> <li>B. (c-a)(a-d)(d-b)(d-e)</li> <li>D. (c-a)(a-d)(d-c)(d-b)(d-e)</li> <li>C.O (log n)</li> <li>erministic sorting algorithm</li> <li>C. O (1)</li> </ul>                                                                                 | e)<br>D.O (n log n <sup>2</sup> )<br>is<br>D. O (log n)                                                        | [           |
|                            | B. If AB is in a minimum<br>C. No minimum spannin<br>G has a unique minimum<br>Consider the graph show<br>graph?<br>A. (a-c)(c-d)(d-b)(d-b)<br>C. (a-d)(d-c)(d-b)(d-e)<br>The time complexity of<br>A.O(n <sup>2</sup> )<br>The upper bound on the<br>A. O (n)<br>The worst case time com                                                             | n spanning tree, then its removing tree contains AB<br>n spanning tree<br>on below. Which of the following $26$<br>20<br>20<br>20<br>0<br>20<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>al must disconnect G</li> <li>ing are the edges in the MST</li> <li>B. (c-a)(a-d)(d-b)(d-e)</li> <li>D. (c-a)(a-d)(d-c)(d-b)(d-e)</li> <li>C.O (log n)</li> <li>erministic sorting algorithm</li> <li>C. O (1)</li> <li>c dynamic knapsack algorith</li> </ul>                                            | <ul> <li>D.O (n log n<sup>2</sup>)</li> <li>is</li> <li>D. O (log n)</li> <li>hm is</li> </ul>                 | [           |
|                            | B. If AB is in a minimum<br>C. No minimum spannin<br>G has a unique minimum<br>Consider the graph show<br>graph?<br>A. $(a-c)(c-d)(d-b)(d-b)$<br>C. $(a-d)(d-c)(d-b)(d-e)$<br>The time complexity of<br>A.O(n <sup>2</sup> )<br>The upper bound on the<br>A. O (n)<br>The worst case time com<br>A.O(n log n                                          | n spanning tree, then its removing tree contains AB<br>n spanning tree<br>on below. Which of the following<br>26<br>26<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>al must disconnect G</li> <li>ing are the edges in the MST</li> <li>B. (c-a)(a-d)(d-b)(d-e)</li> <li>D. (c-a)(a-d)(d-c)(d-b)(d-e)</li> <li>C.O (log n)</li> <li>erministic sorting algorithm</li> <li>C. O (1)</li> </ul>                                                                                 | e)<br>D.O (n log n <sup>2</sup> )<br>is<br>D. O (log n)                                                        | [<br>[      |
| L.<br>2.<br>3.             | B. If AB is in a minimum<br>C. No minimum spannin<br>G has a unique minimum<br>Consider the graph show<br>graph?<br>A. (a-c)(c-d)(d-b)(d-b)<br>C. (a-d)(d-c)(d-b)(d-e)<br>The time complexity of<br>A.O(n $^2$ )<br>The upper bound on the<br>A. O(n)<br>The worst case time com<br>A.O(n log n<br>Worst case efficiency of                           | n spanning tree, then its removing tree contains AB<br>in spanning tree<br>in below. Which of the following $26$<br>20<br>20<br>0<br>20<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>al must disconnect G</li> <li>B. (c-a)(a-d)(d-b)(d-e)</li> <li>D. (c-a)(a-d)(d-c)(d-b)(d-e)</li> <li>C.O (log n)</li> <li>erministic sorting algorithm</li> <li>C. O (1)</li> <li>c dynamic knapsack algorith</li> <li>C.O(n2)</li> </ul>                                                                 | <ul> <li>D.O (n log n<sup>2</sup>)</li> <li>is</li> <li>D. O (log n)</li> <li>hm is</li> <li>D.O(n)</li> </ul> | [           |
| 1.<br>2.<br>3.             | B. If AB is in a minimum<br>C. No minimum spannin<br>G has a unique minimum<br>Consider the graph show<br>graph?<br>A. (a-c)(c-d)(d-b)(d-b)<br>C. (a-d)(d-c)(d-b)(d-e)<br>The time complexity of<br>A.O(n <sup>2</sup> )<br>The upper bound on the<br>A. O (n)<br>The worst case time com<br>A.O(n log n<br>Worst case efficiency of<br>A. log2 n + 1 | n spanning tree, then its removing tree contains AB<br>n spanning tree<br>on below. Which of the following<br>26<br>20<br>20<br>20<br>20<br>20<br>20<br>3<br>PRIMs algorithm<br>B.O(n )<br>time complexity of the nondet<br>B. O (n log n)<br>mplexity of the nondeterministing<br>B.O( log n)<br>binary search is<br>B.n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>val must disconnect G</li> <li>ing are the edges in the MST</li> <li>B. (c-a)(a-d)(d-b)(d-e)</li> <li>D. (c-a)(a-d)(d-c)(d-b)(d-e)</li> <li>C.O (log n)</li> <li>erministic sorting algorithm</li> <li>C. O (1)</li> <li>c dynamic knapsack algorith</li> <li>C.O(n2)</li> <li>C.n<sup>2</sup></li> </ul> | <ul> <li>D.O (n log n<sup>2</sup>)</li> <li>is</li> <li>D. O (log n)</li> <li>hm is</li> </ul>                 | [<br>[<br>[ |
| 0.<br>1.<br>2.<br>3.<br>4. | B. If AB is in a minimum<br>C. No minimum spannin<br>G has a unique minimum<br>Consider the graph show<br>graph?<br>A. (a-c)(c-d)(d-b)(d-b)<br>C. (a-d)(d-c)(d-b)(d-e)<br>The time complexity of<br>A.O(n <sup>2</sup> )<br>The upper bound on the<br>A. O (n)<br>The worst case time com<br>A.O(n log n<br>Worst case efficiency of<br>A. log2 n + 1 | n spanning tree, then its removing tree contains AB<br>in spanning tree<br>in below. Which of the following tree<br>is a spanning tree | <ul> <li>val must disconnect G</li> <li>ing are the edges in the MST</li> <li>B. (c-a)(a-d)(d-b)(d-e)</li> <li>D. (c-a)(a-d)(d-c)(d-b)(d-e)</li> <li>C.O (log n)</li> <li>erministic sorting algorithm</li> <li>C. O (1)</li> <li>c dynamic knapsack algorith</li> <li>C.O(n2)</li> <li>C.n<sup>2</sup></li> </ul> | <ul> <li>D.O (n log n<sup>2</sup>)</li> <li>is</li> <li>D. O (log n)</li> <li>hm is</li> <li>D.O(n)</li> </ul> | [<br>[      |

| The worst case time cor | nplexity of Merge sort is                                                                                                                                           |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                         | [                                                                      | ]                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A.o(n log n)            | B.o(nlogn/2)                                                                                                                                                        | C.nlogn                                                                                                                                                                                                                                                                                          | D.log(n)                                                                                                                                                                                                                                                                                |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Merge sort method wor   | st case is                                                                                                                                                          |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                         | [                                                                      | ]                                                                                                                                                                                                                                                                                                                                                                                                                   |
| A. $n*log(n)$           | $B.O(\log n)$                                                                                                                                                       | C. O (1)                                                                                                                                                                                                                                                                                         | D. O (log n)                                                                                                                                                                                                                                                                            |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Binary Tree method we   | orst case is                                                                                                                                                        |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                         | [                                                                      | ]                                                                                                                                                                                                                                                                                                                                                                                                                   |
| A. O( log n)            | B. $n*log(n)$                                                                                                                                                       | C. O (1)                                                                                                                                                                                                                                                                                         | D. O (log n)                                                                                                                                                                                                                                                                            |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                     |
| The time complexity for | r creating a tree is                                                                                                                                                |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                         | [                                                                      | ]                                                                                                                                                                                                                                                                                                                                                                                                                   |
| A. O( log n)            | B. $n*log(n)$                                                                                                                                                       | C. O (log n)                                                                                                                                                                                                                                                                                     | D. O (1)                                                                                                                                                                                                                                                                                |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                     |
| The Worst case for crea | ting a tree is                                                                                                                                                      |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                         | [                                                                      | ]                                                                                                                                                                                                                                                                                                                                                                                                                   |
| A.O(n log n)            | B.O(h)                                                                                                                                                              | $C.O(n^2)$                                                                                                                                                                                                                                                                                       | D.O(n)                                                                                                                                                                                                                                                                                  |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                         | A.o(n log n)<br>Merge sort method wor<br>A. n*log(n)<br>Binary Tree method wo<br>A. O( log n)<br>The time complexity fo<br>A. O( log n)<br>The Worst case for creat | A.o(n log n)B.o(nlogn/2)Merge sort method worst case isA. n*log(n)Binary Tree method worst case isA. O( log n)B. n*log(n)The time complexity for creating a tree isA. O( log n)B. n*log(n)The time complexity for creating a tree isA. O( log n)B. n*log(n)The Worst case for creating a tree is | Merge sort method worst case isC. O (1)A. $n*log(n)$ B.O( log n)C. O (1)Binary Tree method worst case isA. O( log n)B. $n*log(n)$ C. O (1)The time complexity for creating a tree isA. O( log n)B. $n*log(n)$ C. O (log n)The Worst case for creating a tree isD. O (log n)D. O (log n) | A.o(n log n)B.o(nlogn/2)C.nlognD.log(n)Merge sort method worst case is | A.o(n log n)B.o(nlogn/2)C.nlognD.log(n)Merge sort method worst case is[A. n*log(n)B.O( log n)C. O (1)D. O (log n)Binary Tree method worst case is[A. O( log n)B. n*log(n)C. O (1)D. O (log n)The time complexity for creating a tree is[A. O( log n)B. n*log(n)C. O (log n)D. O (log n)The time complexity for creating a tree is[A. O( log n)B. n*log(n)C. O (log n)D. O (1)The Worst case for creating a tree is[ |

 UNIT-3

 1. Which of the following is true?
 [ ]

 A. Prim's algorithm initialises with a vertex


 B. Prim's algorithm initialises with a edge

 C. Prim's algorithm initialises with a vertex which has smallest edge

 D. Prim's algorithm initialises with a forest

 2. Consider the given graph.

# **R20**



What is the weight of the minimum spanning tree using the Prim's algorithm, starting from vertex a?

|     | u.                                                                                          |                                  |                              |                 |          |   |
|-----|---------------------------------------------------------------------------------------------|----------------------------------|------------------------------|-----------------|----------|---|
|     | A.23                                                                                        | B.28                             | C.27                         | D.11            |          |   |
| 3.  | Worst case is the worst c                                                                   | ase time complexity of Prim'     | s algorithm if adjacency mat | trix is used?   | [        | ] |
|     | A. O(log V)                                                                                 | <b>B.</b> O(V2)                  | <b>C.</b> O(E2)              | D. O(V log E)   | _        | _ |
| 4.  | Prim's algorithm is a                                                                       |                                  |                              |                 | [        | ] |
|     | A. Divide and conquer al                                                                    | gorithm                          | B. Greedy algorithm          |                 |          |   |
|     | C. Dynamic Programmin                                                                       | •                                | D. Approximation algorith    | hm              |          |   |
| 5.  | Prim's algorithm resemb                                                                     | les Dijkstra's algorithm.        |                              |                 | [        | ] |
|     | A.True                                                                                      | B.False                          | C. A&B                       | D.None          |          |   |
| 6.  | Kruskal's algorithm is be                                                                   | est suited for the sparse graph  | s than the prim's algorithm. |                 | [        | ] |
|     | A.True                                                                                      | B.False                          | C. A&B                       | D.None          |          |   |
| 7.  | Consider the graph show                                                                     | n below.                         |                              |                 | [        | ] |
|     | 15 $14$ $5$ $14$ $5$ $14$ $5$ $11$ $22$ $3$ $21$ $4$ Which of the following e from vertex 4 | dges form the MST of the giv     | ven graph using Prim'a algo  | rithm, starting |          |   |
|     |                                                                                             | <b>B</b> .) (4-3)(3-5)(5-1)(1-2) | C. (4-3)(3-5)(5-2)(1-5)      | D. (4-3)(3-2)(2 | 2-1)(1-5 | ) |
| 8.  | Prim's algorithm is also l                                                                  |                                  |                              |                 | [        |   |
|     | A. Dijkstra–Scholten algorithm                                                              | B. Borůvka's algorithm           | C. Floyd–Warshall algorithm  | D. DJP Algori   | thm      |   |
| 9.  | Prim's algorithm can be                                                                     | efficiently implemented using    | g for graphs with grea       | ter density.    | [        | ] |
|     | A. d-ary heap                                                                               | B. linear search                 | C. fibonacci heap            | D. binary sear  | ch       |   |
| 10. | Which of the following is                                                                   | s false about Prim's algorithn   | n?                           |                 | [        | ] |
|     | A. It is a greedy algorithm                                                                 | n                                |                              |                 |          |   |
|     | B. It constructs MST by                                                                     | selecting edges in increasing    | order of their weights       |                 |          |   |
|     | C. It never accepts cycles                                                                  | s in the MST                     |                              |                 |          |   |
|     | D. It can be implemented                                                                    | l using the Fibonacci heap       |                              |                 |          |   |
| 11. | Kruskal's algorithm is us                                                                   | ed to                            |                              |                 | [        | ] |
|     | A. Find minimum spanni                                                                      | ng tree                          | B. find single source shor   | test path       |          |   |
|     | C. Find all pair shortest p                                                                 | oath algorithm                   | D. traverse the graph        |                 |          |   |
| 12. | Kruskal's algorithm is a                                                                    |                                  |                              |                 | [        | ] |
|     | A. Divide and conquer al                                                                    |                                  | B. Dynamic programming       | g algorithm     |          |   |
|     | C. Greedy algorithm                                                                         |                                  | D. Approximation algorith    | ÷               |          |   |
|     | Consider the given graph                                                                    | l.                               |                              |                 | [        | ] |
| 13. |                                                                                             |                                  |                              |                 |          |   |

What is the weight of the minimum spanning tree using the Kruskal's algorithm?

|     |                                                  |                                                         | 5                                        |                 |   |   |
|-----|--------------------------------------------------|---------------------------------------------------------|------------------------------------------|-----------------|---|---|
|     | A.24                                             | B.23                                                    | C.15                                     | D.19            | _ | _ |
| 14. | What is the time complex                         | ity of Kruskal's algorithm?                             |                                          |                 | [ | ] |
|     | A.O(log V)                                       | B.O(E log V)                                            | C.O(E2)                                  | $D.O(V \log E)$ |   |   |
| 15. | Consider the following gr                        | aph. Using Kruskal's algorith                           | im, which edge will be select            | ed first?       | [ | ] |
|     |                                                  |                                                         |                                          |                 |   |   |
|     |                                                  |                                                         |                                          |                 |   |   |
| 16. | A. GF<br>Which of the following ec<br>algorithm? | <b>B.</b> DE<br>lges form minimum spanning              | C. BE<br>g tree on the graph using krush | D. BG<br>kals   | [ | ] |
|     |                                                  |                                                         |                                          |                 |   |   |
|     | A.(B-E)(G-E)(E-F)(D-F)                           |                                                         | B.(B-E)(G-E)(E-F)(B-G)(D                 | 9-F)            |   |   |
|     | <b>B.</b> (B-E)(G-E)(E-F)(D-E)                   |                                                         | D. (B-E)(G-E)(E-F)(D-F)(I                | D-G)            |   |   |
| 17. | Which of the following is                        | true?                                                   |                                          |                 | [ | ] |
|     | A.Prim's algorithm can al                        | so be used for disconnected g                           | graphs                                   |                 |   |   |
|     | B. Kruskal's algorithm ca                        | n also run on the disconnecte                           | d graphs                                 |                 |   |   |
|     | C. Prim's algorithm is sin                       | pler than Kruskal's algorithm                           | n                                        |                 |   |   |
|     | D. In Kruskal's sort edges                       | s are added to MST in decreas                           | sing order of their weights              |                 |   |   |
| 18. | Which of the following is                        | false about the Kruskal's alg                           | orithm?                                  |                 | [ | ] |
|     | A.It is a greedy algorithm                       |                                                         |                                          |                 |   |   |
|     | •                                                | electing edges in increasing or                         | rder of their weights                    |                 |   |   |
|     | C. It can accept cycles in                       |                                                         |                                          |                 |   |   |
|     | D. It can accept cycles in                       |                                                         |                                          |                 | r |   |
| 19. | -                                                | st suited for the dense graphs                          |                                          |                 | [ | ] |
|     | A.True                                           | B.False                                                 | C. A&B                                   | D.None          | r | 1 |
| 20. | Consider the following sta                       |                                                         |                                          |                 | [ | ] |
|     |                                                  | hight produce a non-minimal                             |                                          |                 |   |   |
|     | •                                                | an efficiently implemented us                           | 0 0                                      | cture.          |   |   |
| 1   | A.S1 is true but S2 is false                     |                                                         | B.Both S1 and S2 are false               |                 |   |   |
|     | C.Both S1 and S2 are true                        |                                                         | D.S2 is true but S1 is false             |                 | r | 1 |
| 21. | The Knapsack problem is                          | an example of                                           | -                                        |                 | [ | ] |
|     | A. Greedy algorithm                              |                                                         | B. 2D dynamic programmin                 | ng              |   |   |
| 22  | C. 1D dynamic programm                           | C C                                                     | D. Divide and conquer                    |                 | r | 1 |
| 22. | Ũ                                                | ethods can be used to solve the                         | • •                                      |                 | [ | ] |
|     | A. Brute force algorithm                         | <b>*</b>                                                | B. Recursion                             |                 |   |   |
|     | C. Dynamic programming                           |                                                         | D. Brute force, Recursion a              | •               |   | ~ |
| 23. |                                                  | that can carry a maximum wes {70, 80, 90, 200}. What is |                                          |                 | [ | ] |
|     | A.160                                            | B. 200                                                  | C.170                                    | D.90            |   |   |
| 24. | Which of the following pr                        | coblems is equivalent to the 0                          | -1 Knapsack problem?                     |                 | [ | ] |
|     |                                                  |                                                         |                                          |                 |   |   |

A. You are given a bag that can carry a maximum weight of W. You are given N items which have a weight of {w1, w2, w3,...,wn} and a value of {v1, v2, v3,..., vn}. You can break the items into smaller pieces. Choose the items in such a way that you get the maximum value B. You are studying for an exam and you have to study N questions. The questions take {t1, t2, t3,...,tn} time(in hours) and carry {m1, m2, m3,..., mn} marks. You can study for a maximum of T hours. You can either study a question or leave it. Choose the questions in such a way that your score is maximized C. You are given infinite coins of denominations {v1, v2, v3,....,vn} and a sum S. You have to find the minimum number of coins required to get the sum S D. You are given a suitcase that can carry a maximum weight of 15kg. You are given 4 items which have a weight of  $\{10, 20, 15, 40\}$  and a value of  $\{1, 2, 3, 4\}$ . You can break the items into smaller pieces. Choose the items in such a way that you get the maximum value ſ 1 25. What is the time complexity of the brute force algorithm used to solve the Knapsack problem? A.O(n)B.O(n!)C.O(2n)D.O(n3)ſ 1 26. The 0-1 Knapsack problem can be solved using Greedy algorithm. C. A&B A.True **B**.False D.None 27. ſ 1 In Greedy method, Knapsack problem profits and weights are-----numbers A. Both positive B.one positive one C.both negative D.fraction numbers negative ſ 1 28. In dynamic programming an optimal sequence of decisions is obtained by A. principle of optimality B. optimal merge pattern C. shortest path D. none 29. ſ 1 The multi stage graph problem is to find-----path from s to t. A. minimum cost B. maximum cost C. both D. none ſ 1 30. If  $(P_i, W_i)$  and (Pk, Wk) are two pairs such that  $P_i \leq Pk$  and  $W_i \geq Wk$ , then delete  $(P_i, W_i)$  is B. Merging rule C. Both A. Purging rule D. None ſ 1 31. Algorithm which solves the all-pair shortest path problem is A. Dijkstra B. Floyd C. Prim's D. Warshall's ſ 1 32. TSP stands for-----A. Travelling Sales Person **B.** Tree Vertex Splitting D. Tree Search Process C. Travelling Search Process ſ 1 33. Algorithm TPS takes -----time. A. o(n) B. o(n\*n) C. o(logn) D. o(nlogn) ſ 1 34. For any job I the profit Pi is earned if the job is complete by its ------A. Dead line B. equality C. feasibility D. similarity ſ 1 35. All connected graphs of n nodes with n-1 edges are ------B. vertices A. Trees C. spanning tree D. graph In Binary search tree, all the identifiers in the right sub tree are -----than the identifier in the ſ 1 36. root node A. Lesser B. greater C. equal D. not equal ſ 1 37. \_will usually be much harder to solve than subset problems. C.knapsack problem A. swapping problems D. TSP B.permutation problems In travelling sales person problem, the number of distinct sets S of size k not including 1 and I is ſ 1 38. A.( $k^{n-2}$ ) C.n-1 D.n-2 B.n If a Binary Search tree represents n identifiers, then there will be exactly *n*- internal nodesand ----ſ 1 39. --- external nodes. A. n + 2C. n – 1 D. n-2 B. n + 1 ſ 1 40. \_\_\_\_\_is the naive method for solving traveling salesman problems. A. The brute force approach B. The branch-and-bound method C.Dynamic programming D. The nearest neighbor method

|     |                                                              | UN                                               | IT-4                                                 |                                  |                |      |
|-----|--------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------|----------------------------------|----------------|------|
| 1.  | Which of the problems ca                                     | annot be solved by backtrack                     | ing method?                                          |                                  | [              | ]    |
|     | A. n-queen problem                                           |                                                  | B. subset sum problem                                |                                  |                |      |
|     | C. Hamiltonian circuit pr                                    | oblem                                            | D. Travelling salesman pro                           | blem                             |                |      |
| 2.  | Backtracking algorithm is                                    | s implemented by constructin                     | ng a tree of choices called as?                      |                                  | [              | ]    |
|     | A.State-space tree                                           | B.State-chart tree                               | C.Node tree                                          | D.Backtrackin                    | ig tree        |      |
| 3.  | What happens when the b                                      | oacktracking algorithm reach                     | es a complete solution?                              |                                  | [              | ]    |
|     | A.It backtracks to the roo                                   | t                                                |                                                      |                                  |                |      |
|     | B.It continues searching f                                   | for other possible solutions                     |                                                      |                                  |                |      |
|     | C.It traverses from a diffe                                  | erent route                                      |                                                      |                                  |                |      |
|     | D.Recursively traverses t                                    | hrough the same route                            |                                                      |                                  | -              | -    |
| 4.  | A node is said to be                                         | if it has a possibili                            | ity of reaching a complete sol                       | ution                            | [              | ]    |
|     | A.Non-promising                                              | <b>B</b> .Promising                              | C.Succeeding                                         | D.Preceding                      | -              | -    |
| 5.  |                                                              | -space tree for a backtracking                   |                                                      |                                  | [              | ]    |
|     | A.Depth-first search                                         | B.Breadth-first search                           | C.Twice around the tree                              | D.Nearest neig                   | ghbour fi      | irst |
| 6.  | -                                                            | e tree represent only comple                     |                                                      |                                  | L              | ]    |
|     | A.True                                                       | B.False                                          | C. A&B                                               | D.None                           | -              |      |
| 7.  | In general, backtracking of                                  |                                                  |                                                      |                                  | . L            | ]    |
|     | A.Numerical problems                                         | B.Exhaustive search                              | C.Combinatorial problems                             | D.Graph color<br>problems        | ing            |      |
| 8.  | Which one of the followi                                     | ng is an application of the ba                   |                                                      | problems                         | [              | 1    |
|     | A.Finding the shortest pa                                    |                                                  | B.Finding the efficient qua                          | ntity to shop                    | -              | -    |
|     | C.Ludo                                                       |                                                  | D.Crossword                                          | nety to shop                     |                |      |
| 9.  |                                                              | s faster than the brute force to                 |                                                      |                                  | [              | ]    |
|     | A.True                                                       | B.False                                          | C. A&B                                               | D.None                           |                |      |
| 10. |                                                              |                                                  | es is not based on backtrackin                       |                                  | [              | ]    |
|     | A.Icon                                                       | B.Prolog                                         | C.Planner                                            | D.Fortran                        |                |      |
| 11. | The problem of finding a called?                             | list of integers in a given spe                  | ecific range that meets certain                      | conditions is                    | [              | ]    |
|     | A.Subset sum problem                                         |                                                  | B.Constraint satisfaction pr                         | roblem                           |                |      |
|     | C.Hamiltonian circuit pro                                    | blem                                             | D.Travelling salesman prol                           | blem                             |                |      |
| 12. | Who coined the term 'bac                                     | ektracking'?                                     |                                                      |                                  | [              | ]    |
|     | A.Lehmer                                                     | B.Donald                                         | C.Ross                                               | D.Ford                           |                |      |
| 13. |                                                              |                                                  | at could be computed to give                         | the possible                     | [              | ]    |
|     | solutions of a given probl<br>A.Exhaustive search            | B.Brute force                                    | C De altre altre a                                   | D Divide and                     |                |      |
| 14. |                                                              |                                                  | C.Backtracking<br>hose sum is equal to a given       | D.Divide and<br>positive integer | conquer<br>[   | 1    |
|     | is called as?                                                |                                                  |                                                      | positive integer                 | L              | 1    |
| 15. | A.n- queen problem<br>The problem of placing n<br>called as? | B.Subset sum problem queens in a chessboard such | C.Knapsack problem<br>that no two queens attack each | D.Hamiltonian<br>ch other is     | n circuit<br>[ | ]    |
|     | A.n-queen problem                                            | B.eight queens puzzle                            | C.four queens puzzle                                 | D.1-queen pro                    | blem           |      |
| 16. |                                                              | there for 8 queens on 8*8 boa                    |                                                      |                                  | [              | ]    |
|     | A.12                                                         | B.91                                             | C.92                                                 | D.93                             |                |      |
| 17. | Who publish the bitwise                                      | operation method to solve the                    | e eight queen puzzle?                                |                                  | [              | ]    |
|     | A.ZongyanQiu                                                 | B.Martin Richard                                 | C.Max Bezzel                                         | D.Frank Nauc                     | k              |      |
|     |                                                              |                                                  |                                                      |                                  |                |      |

| 8.        | How many fundamenta                                          | al solutions are there for the | eight queen puzzle?              |                 | [        |    |
|-----------|--------------------------------------------------------------|--------------------------------|----------------------------------|-----------------|----------|----|
|           | A.92                                                         | B.10                           | C.11                             | D.12            |          |    |
| 9.        |                                                              |                                | ne as the part of one of the sol |                 | [        |    |
|           | A.True                                                       | B.False                        | C. A&B                           | D.None          |          |    |
| 0.        | How many fundamenta                                          | al solutions are the for 3 que | ens on a 3*3 board?              |                 | [        |    |
|           | A.1                                                          | B.12                           | C.3                              | D.0             |          |    |
| 1.        | The six queen puzzle h                                       | as a fewer solution than the   | five queen puzzle                |                 | [        |    |
|           | A.True                                                       | B.False                        | C. A&B                           | D.None          |          |    |
| 2.        | Which ordered board is                                       | s the highest enumerated boa   | ard till now?                    |                 | [        |    |
|           | A.25*25                                                      | B.26*26                        | C.27*27                          | D.28*28         |          |    |
| 3.        | In how many direction                                        | s do queens attack each othe   | er?                              |                 | [        |    |
|           | A.1                                                          | B.2                            | C.3                              | D.4             |          |    |
| ١.        |                                                              | at no two queens attack each   |                                  | 2               | [        |    |
|           | A.n-queen's problem                                          | B.8-queen's problem            | C.Hamiltonian circuit<br>problem | D.Subset sum    | problem  | 1  |
| 5.        | Where is the n-queens                                        | problem implemented            | -                                |                 | [        |    |
|           | A.Carom                                                      | B.chess                        | C.ludo                           | D.cards         |          |    |
| <b>j.</b> |                                                              | s can occur in an n-queens p   |                                  |                 | [        |    |
|           | A.True                                                       | B.False                        | C. A&B                           | D.None          |          |    |
|           |                                                              |                                | provide an optimal solution?     |                 | [        |    |
| •         | A.1                                                          | B.2                            | C.3                              | 4.D             | -        |    |
|           |                                                              | g methods can be used to sol   |                                  | 4.D             | r        |    |
|           | A.Greedy algorithm                                           | B.Divide and conquer           | C.Iterative improvemen           | t D.Backtrackin | σ        |    |
| ).        | • •                                                          | ptions, which one of the foll  | owing is a correct option that   | ··              | [        |    |
|           | A.(3,1,4,2)                                                  | B.(2,3,1,4)                    | C.(4,3,2,1)                      | D.(4,2,3,1)     |          |    |
| ).        |                                                              | lutions exist for an 8-queen   |                                  |                 | [        |    |
|           | A.100                                                        | B.98                           | C.92                             | D.88            |          |    |
| •         |                                                              | lutions occur for a 10-queen   |                                  | <b>D</b> .00    | [        |    |
| •         | A.850                                                        | B.742                          | C.842                            | D.724           | -        |    |
| •         |                                                              |                                | owing does not provides an op    |                 | [        |    |
|           | A.(5,3,8,4,7,1,6,2)                                          | B.(1,6,3,8,3,2,4,7)            | C.(4,1,5,8,6,3,7,2)              | D.(6,2,7,1,4,8, | 5,3)     |    |
| 3.        | Hamiltonian path prob                                        |                                |                                  |                 | [        |    |
|           | A.NP problem                                                 | B.N class problem              | C.P class problem                | D.NP complete   | e proble | en |
|           | Which of the following                                       | g problems is similar to that  | of a Hamiltonian path probler    | n?              | Ĩ        |    |
|           | A.Knapsack problem                                           |                                | B.Closest pair problem           |                 |          |    |
|           | C.Travelling salesman                                        | problem                        | D.Assignment problem             |                 |          |    |
|           | -                                                            |                                | g the Hamiltonian path proble    | m?              | [        |    |
|           | Martello                                                     | Monte Carlo                    | Leonard                          | Bellman         |          |    |
|           |                                                              |                                | n be solved using dynamic pro    |                 | [        |    |
|           |                                                              | · ·                            | C.O(N2)                          | D.O(N2 2N)      |          |    |
| •         | A.O(N)<br>In graphs, in which all<br>fixed edge is always ev | -                              | the number of Hamiltonian of     | ( /             | [        |    |
|           | A.True                                                       | B.False                        | C. A&B                           | D.None          |          |    |
|           |                                                              |                                |                                  |                 |          |    |
| 3.        |                                                              |                                | solve the Hamiltonian path pr    |                 | [        |    |

B.2

A.1

#### [ ] 39. For a graph of degree three, in what time can a Hamiltonian path be found? C.O(0.167n) A.O(0.251n) B.O(0.401n) D.O(0.151n) 40. How many Hamiltonian paths does the following graph have? [ ] ( b d ( a e C

#### UNIT-5

C.3

| 1.  | The worst-case efficienc                                | y of solving a problem in pol                     | ynomial time is?                                    |                       | [            | ]  |
|-----|---------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|-----------------------|--------------|----|
|     | A.O(p(n))                                               | $B.O(p(n \log n))$                                | C. O(p(n2))                                         | D. O(p(m log          | n))          |    |
| 2.  | Problems that can be sol                                | ved in polynomial time are k                      | nown as?                                            |                       | [            | ]  |
|     | a. Intractable                                          | b. Tractable                                      | c. Decision                                         | d. Complete           |              |    |
| 3.  | The sum and compositio                                  | n of two polynomials are alw                      | ays polynomials.                                    |                       | [            | ]  |
|     | A.True                                                  | B.False                                           | C.A&B                                               | D.None                |              |    |
| 4.  | is the class o algorithms?                              | f decision problems that can                      | be solved by non-deterministi                       | c polynomial          | [            | ]  |
|     | A. NP                                                   | B. P                                              | C. Hard                                             | D. Complete           |              |    |
| 5.  |                                                         | solved by any algorithm are                       | called?                                             |                       | [            | ]  |
|     | A. Tractable problems                                   | B. Intractable problems                           | C. Undecidable problems                             | D. Decidable          | problem      | ıs |
| 6.  | The Euler's circuit probl                               | em can be solved in?                              |                                                     |                       | [            | ]  |
|     | A. O(N)                                                 | O( N log N)                                       | O(log N)                                            | O(N2)                 |              |    |
| 7.  | To which class does the                                 | Euler's circuit problem belor                     | ng?                                                 |                       | [            | ]  |
|     | P class                                                 | NP class                                          | Partition class                                     | Complete class        | 55           | _  |
| 8.  | Halting problem is an ex                                | -                                                 |                                                     |                       | L            | ]  |
|     | Decidable problem                                       | Undecidable problem                               | Complete problem                                    | Tractable prol        | blem         | _  |
| 9.  |                                                         | cedure does a non-determinis                      |                                                     |                       | L            | ]  |
| 10  | A.1                                                     | B.2                                               | C.3                                                 | D.4                   | r            |    |
| 10. | A non-deterministic algo<br>its verification stage is p |                                                   | ministic polynomial if the time                     | e-efficiency of       | [            | ]  |
|     | A.True                                                  | B.False                                           | C.A&B                                               | D.None                | -            | _  |
| 11. | How many conditions ha                                  | we to be met if an NP- comp                       | lete problem is polynomial re-                      | ducible?              | L            | ]  |
|     | A.1                                                     | B.2                                               | C.3                                                 | D.4                   | -            |    |
| 12. | To which of the followin                                | g class does a CNF-satisfiab                      | ility problem belong?                               |                       | L            | ]  |
|     | NP class                                                | P class                                           | NP complete                                         | NP hard               | r            |    |
| 13. | • • •                                                   | aired to prove that a decision                    |                                                     |                       | L            | ]  |
|     | A.1                                                     | B.2                                               | C.3                                                 | D.4                   | r            | ,  |
| 14. |                                                         | problems is not NP complete                       |                                                     |                       | L            | 1  |
|     | Hamiltonian circuit                                     | Bin packing                                       | Partition problem                                   | Halting proble        | em           | 1  |
| 15. | The choice of polynomia<br>Computational<br>complexity  | l class has led to the develop<br>Time complexity | ment of an extensive theory c<br>Problem complexity | alled<br>Decision com | l<br>plexity | J  |
| 16. |                                                         | all decision problems that:                       |                                                     |                       | [            | ]  |
|     | A.Can be solved by poly                                 | *                                                 |                                                     |                       |              |    |
|     | • • •                                                   | olved by polynomial-time al                       | gorithms.                                           |                       |              |    |
|     | •                                                       | algorithms that can verify p                      | •                                                   |                       |              |    |
|     | 1                                                       | 2 71                                              |                                                     |                       |              |    |

## **R20**

D.4

| Co  | ourse Code: 20CS0523                                                                              |                                                                  | I                  | R20 |
|-----|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------|-----|
|     | D.All of the above.                                                                               |                                                                  |                    | -   |
| 17. | The class NP is the set of all decision problems that:                                            |                                                                  | ]                  | ]   |
|     | A. Can be solved by polynomial-time algorithms.                                                   |                                                                  |                    |     |
|     | B. Can definitely not be solved by polynomial-time at                                             | -                                                                |                    |     |
|     | C. Have polynomial-time algorithms that can verify p                                              | otential solutions                                               |                    |     |
| 10  | D. All of the above                                                                               | _                                                                | г                  | 1   |
| 18. | The class NP–complete is the set of all decision probl                                            | ems that:                                                        | [                  | 1   |
|     | A. Can be solved by polynomial-time algorithms.                                                   |                                                                  |                    |     |
|     | B. Can definitely not be solved by polynomial-time at                                             | -                                                                |                    |     |
|     | C. Have polynomial-time algorithms that can verify p                                              | otential solutions                                               |                    |     |
| 19. | D. None of the above $Y \in Y$ . Which must be true?                                              |                                                                  | [                  | 1   |
| 19. | Suppose $X \leq_p Y$ . Which must be true?<br>A.Problem X is polynomial-time reducible to problem | n V                                                              | L                  | 1   |
|     | B. Problem Y is polynomial-time reducible to problem                                              |                                                                  |                    |     |
|     | C. Problems X and Y are polynomial-time equivalent                                                |                                                                  |                    |     |
|     | D. All of the above                                                                               | •                                                                |                    |     |
| 20. | Suppose $X \equiv_p Y$ . Which must be true?                                                      |                                                                  | [                  | ]   |
|     | A.Problem X is polynomial-time reducible to problem                                               | ιY                                                               |                    |     |
|     | B. Problem Y is polynomial-time reducible to problem                                              |                                                                  |                    |     |
|     | C. Problems X and Y are polynomial-time equivalent                                                |                                                                  |                    |     |
|     | D. All of the above                                                                               |                                                                  |                    |     |
| 21. | Suppose $X \leq_p Y$ and $Y \leq_p Z$ . Which must be true?                                       |                                                                  | [                  | ]   |
|     | A. $Y \leq_p X$ . B. $Z \leq_p Y$ .                                                               | C. $X \leq_p Z$ .                                                | D. All of the abov | e   |
| 22. | Suppose $X \leq_p Y$ and $Y \leq_p Z$ and $Z \leq_p X$ . Which must                               | be true?                                                         | ]                  | ]   |
|     | A. $Y \leq_p X$ . B. $Z \leq_p Y$ .                                                               | C. $X \leq_p Z$ .                                                | D. All of the abov | e   |
| 23. | Which of the following statements are currently know                                              | n to be true?                                                    | [                  | ]   |
|     | A. $P=NP$ B. $NP\subseteq P$                                                                      | C. P⊆NP.                                                         | D. All of the abov | e   |
| 24. | The most important unresolved question in computer                                                | science is:                                                      | [                  | ]   |
|     | A. Does $P = NP$ ?                                                                                |                                                                  |                    |     |
|     | B. Why does a window crash so often?                                                              |                                                                  | 11                 |     |
|     | C. Why isn't C++ named ++C, since we wish to use t to C?                                          | his language after the extra fea                                 | tures were addec   |     |
|     | D. How many years will I need to work before my tot income?                                       | al career salary equals Bill Gat                                 | es' hourly         |     |
| 25. | The Satisfiability, Clique, Independent Set, and Hami                                             | ltonian Cycle problems are kno                                   | own to be: [       | ]   |
|     | A. Members of the class P.                                                                        | B. Members of the class NP                                       | -complete.         |     |
|     | C. Both of the above.                                                                             | D. None of the above.                                            |                    |     |
| 26. | The Minimum Spanning Tree, Sorting, and Matrix Cl<br>be:                                          |                                                                  | _                  | ]   |
|     | A. Members of the class P.                                                                        | B. Members of the class NP                                       | -complete.         |     |
| 27  | C. Both of the above.                                                                             | D. None of the above.                                            | [                  | ]   |
| 27. | The Graph Isomorphism and Prime Number problems                                                   |                                                                  |                    | 1   |
|     | A. Members of the class P.                                                                        | B. Members of the class NP                                       | -complete.         |     |
| 28. | C. Both of the above.                                                                             | D. None of the above.<br>NB  and  Y = Y Which must               | t be true? [       | ]   |
|     | Suppose problem X is in class P, problem Y is in class A.Problem Y is in class P.                 | s NP, and $X \equiv_p Y$ . which mus<br>B.Problem Y is NP–comple |                    | L   |
|     | C.Both of the above                                                                               | D.None of the above.                                             |                    |     |
|     |                                                                                                   | Dirione of the above.                                            |                    |     |

| 29. | Suppose problem X is NP-<br>A.Problem Y is in class P. | complete, problem Y is in                                 | class NP, and $X \equiv_p Y$ . Which<br>B.Problem Y is NP-completion |               | [ | ] |
|-----|--------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------|---------------|---|---|
|     | C.Both of the above                                    |                                                           | D.None of the above.                                                 |               |   |   |
| 30. |                                                        | lass P problem Y is in clas                               | as NP, and $X \leq_p Y$ . Which must                                 | st be true?   | [ | ] |
|     | A.Problem Y is in class P.                             |                                                           | B.Problem Y is NP–comple                                             |               |   |   |
|     | C.Both of the above                                    |                                                           | D.None of the above.                                                 |               |   |   |
| 31. |                                                        | complete problem Y is in                                  | class NP, and $X \leq_p Y$ . Which                                   | must be true? | [ | ] |
|     | A.Problem Y is in class P.                             | complete, problem 1 is m                                  | B.Problem Y is NP-comple                                             |               |   |   |
|     | C.Both of the above                                    |                                                           | D.None of the above.                                                 |               |   |   |
| 32. |                                                        | lass NP_problem Y is in cl                                | ass P, and $X \leq_p Y$ . Which must                                 | st be true?   | [ | 1 |
|     | A.Problem Y is in class P.                             |                                                           | B.Problem Y is NP–comple                                             |               | - | - |
|     | C.Both of the above                                    |                                                           | D.None of the above.                                                 |               |   |   |
| 33. |                                                        | lass NP_problem Y is NP-0                                 | complete, and $X \leq_p Y$ . Which                                   | must he true? | [ | ] |
|     | A.Problem Y is in class P.                             |                                                           | B.Problem Y is NP–completed $A = \frac{1}{2}$                        |               | - | - |
|     | C.Both of the above                                    |                                                           | D.None of the above.                                                 |               |   |   |
| 34. |                                                        | complete problem V is in                                  | class P, and $X \leq_p Y$ . Which m                                  | ust be true?  | [ | 1 |
|     | A.Problem X is in class P.                             | complete, problem 1 is m                                  | B.Problem Y is NP–comple                                             |               | L |   |
|     | A.F roblem X is m class F.<br>C.P = NP                 |                                                           | D.All of the above.                                                  | ite.          |   |   |
| 35. |                                                        | ne problem X, that problem                                | 1 X is NP-complete and also pr                                       | oblem X is in | [ | ] |
|     |                                                        | ou an A+ in CS 470 regard                                 | less of your grades on all these                                     | quizzes.      |   |   |
|     |                                                        | -                                                         | claim your PhD in computer so                                        | -             |   |   |
|     | C. You would receive job of                            | offers to join the computer                               | science faculties at MIT and S                                       | tanford.      |   |   |
|     | D. All of the above.                                   |                                                           |                                                                      |               |   |   |
| 36. | Under what condition any                               | set A will be a subset of B                               | ?                                                                    |               | [ | ] |
|     | A. if all elements of set B a                          |                                                           |                                                                      |               |   |   |
|     | B. if all elements of set A a                          | -                                                         |                                                                      |               |   |   |
|     | C. if A contains more elem                             | •                                                         |                                                                      |               |   |   |
|     | D. if B contains more elem                             | ents than A                                               |                                                                      |               |   |   |
| 37. | What is a subset sum probl                             |                                                           |                                                                      |               | [ | ] |
|     | A. finding a subset of a set                           | that has sum of elements e<br>ce of a subset that has sum | equal to a given number<br>of elements equal to a given n            | umber and     |   |   |
|     | C. finding the sum of elem                             | ents present in a set                                     |                                                                      |               |   |   |
|     | D. finding the sum of all th                           | ne subsets of a set                                       |                                                                      |               |   |   |
| 38. | Which of the following is t sum problem?               | rue about the time complete                               | xity of the recursive solution o                                     | f the subset  | [ | ] |
|     | A. It has an exponential tin                           | ne complexity                                             | B. It has a linear time comp                                         | olexity       |   |   |
|     | C. It has a logarithmic time                           | - ·                                                       | D. it has a time complexity                                          | ÷             |   |   |
| 39. |                                                        | e complexity of dynamic p                                 | rogramming solution of the su                                        | bset sum      | [ | ] |
|     | A. O (n)                                               | B. O (sum)                                                | C. O (n2)                                                            | D. O (sum*n)  |   |   |
| 40. | Subset sum problem is an e                             | example of NP-complete p                                  | roblem.                                                              |               | [ | ] |
|     | A.True                                                 | B.False                                                   | C.A&B                                                                | D.None        |   |   |

### Prepared By: Dr.J.Sridhar,Ms.N.Monika,Ms.K.Maheswari,Mrs.T.M. Mekalarani & Viswasahithya

### BIT BANK ANSWERS

| UNIT-1 |   |    |    |      |   |    |   |  |
|--------|---|----|----|------|---|----|---|--|
| 1      | С | 11 | D  | 21   | Α | 31 | С |  |
| 2      | В | 12 | В  | 22   | С | 32 | D |  |
| 3      | С | 13 | Α  | 23   | С | 33 | Α |  |
| 4      | С | 14 | С  | 24   | В | 34 | С |  |
| 5      | D | 15 | С  | 25   | Α | 35 | С |  |
| 6      | В | 16 | Α  | 26   | Α | 36 | С |  |
| 7      | С | 17 | С  | 27   | С | 37 | В |  |
| 8      | Α | 18 | D  | 28   | Α | 38 | D |  |
| 9      | С | 19 | Α  | 29   | С | 39 | Α |  |
| 10     | С | 20 | Α  | 30   | С | 40 | В |  |
|        |   |    | UN | IT-2 |   | 1  |   |  |
| 1      | С | 11 | С  | 21   | Α | 31 | С |  |
| 2      | Α | 12 | В  | 22   | С | 32 | Α |  |
| 3      | В | 13 | В  | 23   | С | 33 | D |  |
| 4      | В | 14 | С  | 24   | С | 34 | Α |  |
| 5      | В | 15 | В  | 25   | D | 35 | С |  |
| 6      | D | 16 | Α  | 26   | В | 36 | Α |  |
| 7      | В | 17 | В  | 27   | С | 37 | Α |  |
| 8      | С | 18 | Α  | 28   | В | 38 | В |  |
| 9      | С | 19 | В  | 29   | С | 39 | D |  |
| 10     | В | 20 | D  | 30   | С | 40 | В |  |
|        |   |    | UN | IT-3 |   |    |   |  |
| 1      | Α | 11 | Α  | 21   | В | 31 | В |  |
| 2      | С | 12 | С  | 22   | D | 32 | Α |  |
| 3      | В | 13 | D  | 23   | Α | 33 | В |  |
| 4      | В | 14 | В  | 24   | В | 34 | Α |  |
| 5      | Α | 15 | С  | 25   | С | 35 | Α |  |
| 6      | Α | 16 | Α  | 26   | В | 36 | В |  |
| 7      | D | 17 | В  | 27   | Α | 37 | В |  |
| 8      | D | 18 | С  | 28   | Α | 38 | С |  |
| 9      | Α | 19 | В  | 29   | Α | 39 | В |  |
| 10     | В | 20 | D  | 30   | Α | 40 | Α |  |
|        |   |    |    |      |   |    |   |  |

| 1 | D | 11 | В | 21 | Α | 31 | D |
|---|---|----|---|----|---|----|---|
| 2 | Α | 12 | А | 22 | С | 32 | В |
| 3 | В | 13 | С | 23 | С | 33 | D |
| 4 | В | 14 | В | 24 | Α | 34 | С |
| 5 | Α | 15 | Α | 25 | В | 35 | Α |

| 6  | В | 16 | С | 26 | В | 36 | D |
|----|---|----|---|----|---|----|---|
| 7  | С | 17 | Α | 27 | В | 37 | Α |
| 8  | D | 18 | D | 28 | D | 38 | В |
| 9  | Α | 19 | В | 29 | В | 39 | Α |
| 10 | D | 20 | D | 30 | С | 40 | Α |

| UNIT-5 |   |    |   |    |   |    |   |  |
|--------|---|----|---|----|---|----|---|--|
| 1      | Α | 11 | В | 21 | С | 31 | В |  |
| 2      | В | 12 | С | 22 | D | 32 | Α |  |
| 3      | Α | 13 | В | 23 | С | 33 | D |  |
| 4      | Α | 14 | D | 24 | Α | 34 | D |  |
| 5      | В | 15 | Α | 25 | В | 35 | D |  |
| 6      | D | 16 | Α | 26 | Α | 36 | В |  |
| 7      | Α | 17 | С | 27 | D | 37 | В |  |
| 8      | В | 18 | D | 28 | Α | 38 | Α |  |
| 9      | В | 19 | Α | 29 | В | 39 | D |  |
| 10     | Α | 20 | D | 30 | D | 40 | Α |  |